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In recent years several variational problems for the shape of a body for 
minimum drag at hypers0ni.o flight speeds have been solved on the basis 
of Newton’s law of resistance C 1 1, 

Solution of the variational problem in a more exact formulation, 
using A. IBusemann's law of resistance. was proposed in [2,3,5 I. However, 
as was shown by Hayes 13 1, in the improved formulation the contour of 
the body of &i&mum drag should have a discontinuity in slope at the end 
point, because then, according to Busemann’s law, an infinite negative 
pressure appears at that point, reducing the drag by a finite amount. 
The physical pressure cannot be negative, and a change in slope at the 
end-point should not, in supersonic flow, influence the pressure dis- 
tribution upstream and hence the drag. 

This disagreement with the physics of supersonic flow requires a new 
formulation of the variational problem with revised conditions, so that 
the pressure on the body contour will be everywhere nonnegative. 

A general method is given below for the solution of this problem for 
plane aud axis~m~etr~c gas flow. 

We consider flow past a body with, in general, a duct, in B plane or 
axismetric hypersonic gas stream. Assuming that all characteristic 
dimensions are referred to the length of the body, we take its length 
as unity. 

The drag coefficient of the body according to lhsem~~‘s formula is 
then, after a transformation given in C2 1, equal to 
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c, = 2y rl" - ray 

rl” - rev II - - (1 + :,.2)v*~,;‘~;~~~ V r m~‘qm>___ 8 

(1) r(3) 1 
The notation is given in Fig. 1; the 

_’ 
‘i 

quantity ,Y = 1 for plane flow and v = 2 
for axisymzetric flow, and rl’ is the ---cf .-+ D 

derivative at the end-point of the con- l5.l z 
0 

tour. 
I-&, I 

Fig. 1. 

In calculating the coefficient C 

for a body of revolution, the drag z orce 

is referred to the annular area w(r12 - ro2); in the case of plane flow 

r ,, = 0, and the drag force acting on only one side of the profile is con- 
sidered. ‘lhe contour is assumed to he smooth and to have only finite dis- 
continuities in second derivative at discrete points. Under these assump- 
tions it is valid to write Busemann’s formula in the form (1). 

For given values of the quantities r,, and rl it follows from (1) that 

the drag of the body attains an absolute minimum for the maximum value 
of the integral and the condition that rl’ = 0. ‘l&e corresponding con- 
tour was found in the papers mentioned above and, as was remarked, is 
not smooth. 

Writing the condition that the pressure on the contour be nonnegative 
we have, according to [ 2 I 

rra + 
r” ‘ r’r”-l& s r”-‘(1 + +)‘j2 o (1 + r’2)“Z 

>O 

We will solve the variational problem for a body of given lengths 

(rO and rl) under condition (2), after first proving the following 
theorem: 

Theorem. ‘Ihe minimum of Expression (1) for a body of given length 
under condition (2) can be attained only on a curve along which, in a 
certain finite part c <z ~1, the inequality (2) becomes an equality, 
that is, the pressure vanishes. 

Proof. Assuming the contrary, let the minimum of (1) be attained on a 
certain curve r(z) along which the pressure is everywhere greater than 
zero. We then consider Expression (1) on some neighboring curve r”(z) = 

r(z) + 6 1 (z), where r)(z) is different from zero only in the interval 
1 - c 1 < z < 1 and possesses necessary smoothness properties (e and 6 
are small quantities). If the inequality (2) is satisfied strictly on’the 
curve r(z), then for sufficiently small 6 it will be satisfied also for 
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the function P(z), since the left-hand side of 

of O(e ). Substituting r"(z) into the functional 

second term in square brackets becomes, after a 

(2) varies as a quantity 

(l), we find that the 

simple calculation 

1 
1 rv -I r’dz q’ (1) ’ rYB1rrdz 

(1 + h’? (1 + rq - (1 + rpp ;, (1 + ry \ 
+ 0 (E%) 

Now, choosing the function T](Z) with the value of its derivative 

n'(1) < 0 (which is always possible, because it is easy to show that 

r'(1) > O), we obtain from (1) that the value of Cx on the curve r'(z) 

is less than on the curve r(z). Thus, we arrive at a contradiction and, 

consequently, the desired extremal has a finite piece c < z < 1 with 

zero pressure. All other possibilities are ruled out except the case 

c = 1, which we now consider. 

In fact, if we put c = 1, the equality (2) is satisfied identically 

at this point for all values rc’ > 0 (cf. also (4)). Consequently, it is 

possible to repeat in full the proof of the theorem and arrive at a 

contradiction. Here the inequality (2) can be satisfied on the comparison 

line if, for example, we set r-O”= 0 in the interval 1 - l/2 c1 < z < 1, 

and at the point z = 1 - l/2 c1 introduce a finite discontinuity in the 

function q"(z) such that the function n"(z) is of order unity on the seg- 

ment 1 - E 1 Q z < 1 - l/2 cl. 

We proceed to the investigation of the manifold of curves of zero 

pressure. On this manifold the inequality (2) becomes an equality, and 

it is not difficult to see that it represents the derivative of the ex- 

pression 

Hence, in particular, it follows that it is impossible to pass the 

contour of zero pressure through the initial point z = 0. 

Eliminating the integral from (2) and (3) we obtain an ordinary 

differential equation of second order for the function r(z). The general 

solution, representing the family of curves of zero pressure on the seg- 

ment c < z < 1, has the form* 

* In other variables the curve of zero Pressure was first obtained by 

Lighthill [ 4 I. 
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rl v+1 - p+1 

v (v + 1) --rcv(+--t) (rl - r) = k (1 - 2) 
I 

. rc’ 
c 

k= 
s 

r’r”-l dz 

rCy (1 + rc~2f/a o (1 + ,~a)% 

The constants of integration are found successively from the condi- 
tions that the curve has, at the point C(c, rc), the direction of the 

tangent r c ’ and passes through the point B(1, rl). ‘Ihe form of the line 
of zero pressure depends, through the constant k, on the form of the 
stream line ahead. Investigation of Equation (4) shows that if the 
pressure is negative on the contour in the neighborhood of the final 
point, then its final portion may be replaced by a line of zero pressure 
tangent at the juncture. On the other hand, a contour on which the 
pressure is everywhere positive can, in the neighborhood of the end-point, 
be corrected so that the pressure at the end is negative. Hence, if in 
the correction of the contour a section is replaced by a line of zero 
pressure, then we obtain a new contour whose drag is either less than the 
drag of the contour with positive pressure or differs by an arbitrarily 
small amount. Consequently, we arrive at the conclusion that if there 
exists a contour of minimum drag in the class of curves with a section 
of zero pressure at the end, and p > 0 everywhere on this contour, then 
this minimum is the least value of the drag (1) under the condition (2). 

As a result of the theorem proved, the drag of the optimum body arises 
only from its forward portion 0 < z < c, and Equation (1) 
by the expression 

1 c s r-l r'dz 

(1 + rc12f’p o (1 + r’2)“r 1 

can be replaced 

(5) 

We calculate the variation of (3% considering that the quantities c, 

rc’ Fc ’ are variable. After an easy transformation we obtain 

zvr V--lr ,YA 

6C, =I: 
c c 

(rl” - rOv) (1 + r,‘2)z i 
(2 + rc’“) 6r, - r,‘tk + 

F= 
p-lrt 

(1 + r’2)“o ’ 
6r, # 6r for z=c 
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On the optimal curve (0 G z <cl the variation should vanish. In this 
connection, if we consider the very narrow class of admissible lines 
passing through the end with a 

the angular coefficient of the 
constant angular coefficient rC’ equal to 
extremal integral standing in curly 

brackets (61, we conclude that in this class also the unknown curve is 
optimal. Consequently, according to (6) the Euler equation for the func- 
tion F should be satisfied. Its solution was studied in [ 2,s 1. In [5 ] 
it was shown that along’the extremal the pressure is greater than zero. 

It is convenient to carry out the investigation separately for plane 
and axisymmetric flows. Axisymmetric flow offers the greater difficulty, 
although the line of reasoning is identical in the two cases. Because 
the results of the solution for plane flow agree with the results ob- 
tained for this case by the non-rigorous solution of Hayes [3 f, we give 
the solution here only for axisymmetric flow. 

In parametric form the extremals of the above-mentioned Euler equation 
E2 1 are determined by the equations 

r R faf Z 

-=z(ul)-z(ao)’ 
z (a) - z (aof 

c - = 2 (Ul) - 2 (ao) c 

R(4=&uY ,(,)=~~~u+.$~~.$lnt~~ 

(7) 

Here, the parameter a = tan-“(dr/dz) varies within the limits 
aa < a ( a1 for 0 Q z 6 c. 

At the end-point of the contour the following relation holds: 

ro R taoI 
- ‘== 2 (al) - 2 (04 ’ c 

‘Ihe nose part of the optimal curve is found, as was shown, among the 
extremals of the Euler equation; it is therefore possible to seek it in 
the very narrow class of admissible lines, keeping only one of the 
extremals. 

As a result we obtain 

Eliminating the quantities c and 6c from Expression (6) with the aid 
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of (8) and (91, we have the relation 
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rc’ (W M1 (rcr 8-t’) = 2 + fC’2 - - 
z’ (a01 

R w I 
2 (ccl) - 2 (aJ - -- 1 3 ca czg 

k (1 + rc’a)z rc’ 
Ma (rc, r,‘) = --.r -- 

c R (ad -l 2’ (ad - R Ia1) BE@2 12 (ct,) - 2 (aJ - 
2’ 04 Fc’R 

It 

'Ihe problem is now reduced to finding the juncture-point C(c, rc) of 
the extremal (7) and the line of zero pressure (4). 

We put Equation (4) at point C in the form 

A=$-1 
c 

sin’ UI 
k=T 

cos a 1 cosa 3 cosa 
en a 
T--4sinqa---’ 8 sirPa 

Taking the variation of (111, we find that 

Eliminating the variations from (10) and (121, we have 

Ml (rc, r,‘) iVz (r,, rc’) - NI (rcr r~‘) MS PC, rc’l = 0 (13) 

Equations (11) and (131, obtained in closed form, permit the deter- 
mination of the quantities rc and rc'. All remaining parameters, includ- 

ing the coordinate c of the juncture point, are then found imdiately 
from (8). 
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Solution of the equations is significantly simplified if one considers 
a body depending on only the one parameter rl, for example by taking 

F o = 0. However, in axisymmetric flow it is impossible to obtain a body 
completely without a duct (as in the theory of Newton), because accord- 
ing to (8) the quantity r0 cannot be taken equal to zero. Therefore, we 
require that r. be a minimum for a given rl. Then according to (8) one 

parameter is given by the condition a0 = l/2 T. We will regard such a 
body as practically solid, because even for thick bodies r,,/rl is less 

than 1 per cent. In this case, Equations (11) and (13) lead, after ele- 
mentary calculation, to a single cubic equation of the form 

A3+3A3+aA+b=0, 
a = 6 k (~1) 1 sin2 a~- 1 

Q (RI/ k (m) - 21 

b= 
~7% (4 ’ z (al) 

k,,’ (al) / k (al) - 21 i[ 
___- 

R (ad 
cot c$ 1 - - - - - 

I 

z (al) z’ (al) 

[ 

R’ (al) 

R (al) z (~1) R (ad II (14) 

{ k (al) 
sin2 al co9 u1 

The quantities necessary for constructing the optimal curve are found 
in the following way. Given a value of the parameter aI, one then calcu- 
lates the coefficients a, b and 1, and determines the quantity A with 
the use of Equation (14). After this the relative thickness rl of the 
body and the coordinate c of the juncture-point are found from (11) and 
(8) according to the formulas 

6k (i+ A) z (ad PI 

‘I= AS + 3A2 + 6k [A cot u1 + z (al) / R (al)] ’ C=R(al)l+A (15) 

Results of ca .culation for various values of the parameter a1 are 
given in the table. For a range of values of rI from about 0.1 to 0.7 the 

coordinate of the juncture- 
point is found to lie in the 
interval 0.6 < c < 0. ‘7 (for 
plane flow c = 0.5). In Fig. 2 
the solid lines show some 
optimal curves calculated in 

the indicated manher from Equa- 

tions (4) and (8). For compar- 

ison, the broken lines show the 
form of the optimal bodies 
according to Newton [ 1 1 , which 
to the scale of the figure are _ I. 

1.345 
1.335 
1.328 
1.322 
1.282 
1.248 
1.206 
1.183 

- 

T- 

c I I CX rl 

0.607 0.011 0.116 
0.615 0.030 0.170 
0.620 0.054 0.230 
0.625 0.082 0.290 
0.644 0.121 0.365 
0.655 0.216 0.532 
0.704 0.335 0.673 
0.724 0.401 0.767 

indistinguishable from a curve proportional to zJ14. The dependence of 
the drag of the optimal body (5) on the thickness ratio is shown in Fig. 

3 (curve 1). The corresponding dependence for the body of optimum form 
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Fig. 2. Fig. 3. 
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according to Newton is also shown (curve 2). Comparison has shown that 

the drag of the optimal body is less than that of the known optimal body 
of Cole by 15 to 1’7 per cent and that of the Newton or r 3’4 body by 20 

to 22 per cent. In some cases, when the thickness of the body is moderate, 

it is convenient to expand Equation (14) as a series in the parameter al. 

Then we have 

a=3(1- $ o?) + 0 (a~~‘), b = - $ (1 - + ~2) + 0 (a#) 

The author is indebted to G.G. Chernyi for formulating the problem. 
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